
Abstract. The phenyl cation is known to have two low-
energy minima, corresponding to 1A1 and

3B1 states, the
®rst of which is more stable by ca. 25 kcal/mol. The
minimum energy crossing point between these two
surfaces, located at various levels including a hybrid
method ®rst described here, lies just above the minimum
of the triplet, 0.12 kcal/mol at the CCSD(T)/cc-pVDZ//
B3LYP/SV level, and there is signi®cant spin-orbit
coupling between the surfaces at this point. On the basis
of these results, the lifetime of the triplet is expected to
be very short.
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1 Introduction

Many molecular systems display a fascinating diversity
of isomeric structures, which are, however, all local
minima on the same potential energy surface (PES). In
some cases, there may be di�erent isomers which lie on
di�erent PESs. The interconversion of these species is
then a non-adiabatic process [1], and obeys completely
di�erent rules to those describing molecular motion on a
single PES. A good example of a species occupying
multiple PESs is the phenyl cation. The ground state of
this ion was not known unambiguously until quite
recently. Various experimental and computational stud-
ies had led to contradictory conclusions, in that some
favoured a ground state singlet, while others predicted a
triplet ground state [2, 3]. In the 1A1 singlet state, the p
electrons of the benzene ring are left intact, and there is
an empty, r-type orbital in place of one of the CAH
bonds of benzene. The triplet 3B1 state, on the other

hand, has one unpaired electron in the r orbital, and
another in a p orbital of B1 orbital. Two recent high-
level computational studies [2, 3] have readdressed this
question and have de®nitively proved that the 1A1 state
is the ground state, situated approximately 25 kcal/mol
below the 3B1 state. These computational investigations
were also able to explain why the experimental, photo-
electron spectroscopy, studies led to contradictory and
incorrect results. In fact, the 3B1 state is rather close in
geometry to the neutral phenyl radical, since it di�ers
in electronic occupation only by the removal of a p
electron, whereas the empty r orbital present in the 1A1

state leads to extensive rehybridization of the corre-
sponding carbon atom and to a very di�erent geometry
from that of the phenyl radical. The Franck-Condon
factor is thus expected to largely favour photoionization
of the radical to form the 3B1 state. Indeed, explicit
calculation of the vibrational wavefunction overlap was
performed in one of the studies [2], leading to the
prediction that the bands for ionization to the 1A1 state
should be very weak, and indeed that the fundamental
should not be observed.

In other words, the large di�erence in geometry be-
tween the two spin states of the phenyl cation means that
the less stable triplet cation may be preferentially formed
in some experimental conditions. The question then
arises as to what then happens to this cation. Is it a
stable species, what is its lifetime, and can it be made to
undergo chemical reactions, or does it decay rapidly to
the ground state? This decay is a spin-forbidden, non-
adiabatic process [1], which can, in a ®rst approxima-
tion, be considered to occur by weak spin-orbit coupling
of the two PESs in the vicinity of areas where they cross.
To estimate the speed of this process, it is necessary to
determine the minimum energy crossing point (MECP)
on the hyperline where the two surfaces cross, and the
coupling constant between them at that point. In this
communication, we have done this for the intersection
between the 1A1 and

3B1 states of the phenyl cation. The
methods used to locate and characterise the MECP are
partly new, and are therefore presented in some detail in
Sect. 3.
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2 Computational details

Hartree-Fock (HF) and density functional calculations
using the B3LYP hybrid density functional were carried
out using Gaussian 94 for Windows [4], on Pentium
personal computers, with a split-valence (SV) basis set of
double-zeta quality [5]. For the triplet, the unrestricted
formalism was used. The two minima were characterized
by analytical computation of the force constants at both
levels of theory. The MECP was optimized using a
simple, steepest-descent type approach [6] using the
gradients described in Sect. 3, and was characterized as a
minimum on the crossing line by diagonalization of the
projected e�ective Hessian He� described in Eq. (4) of
Sect. 3. The projection [7] and diagonalization were
carried out using the Gamess for PC program package
(version of 18 March 1997) [8]. The required Hessian
was generated in three steps: (1) analytical computation
of the Hessian on both surfaces in Gaussian; (2)
translation of the Hessian as encoded in the correspond-
ing Gaussian archive entry into a Hessian in Gamess
format, using the GRABFF routine [9]; and (3) a
Fortran routine [10] written to read in the two Hessians
and gradients, to calculate the e�ective Hessian follow-
ing Eq. (4), and to write this He� in Gamess format.
Closed-shell and restricted open-shell [11] coupled-
cluster calculations were carried out in Molpro [12]
using the correlation consistent polarized valence dou-
ble-zeta (cc-pVDZ) basis set [13].

Calculation of the spin-orbit coupling constant at the
geometry of the B3LYP MECP was also performed
using Gamess for PC, with the 6-31G(d) basis set [14].
The calculations use an approximate one-electron
operator, with an e�ective nuclear charge Ze� as an
adjustable parameter to incorporate the missing two-
electron terms [15, 16]. Values of 3.6 and 1.0 for Ze�(C)
and Ze�(H), as recommended in the literature [15], were
used in the present study. The spin-orbit coupling matrix
element between the singlet wavefunction and each
substate of the triplet wavefunction was calculated using
complete active space self-consistent ®eld (CASSCF)
wavefunctions. The 1A1 wavefunction was a fully opti-
mized CASSCF wavefunction, with the active space in-
cluding the three bonding p orbitals, the empty r orbital,
and the three empty anti-bonding p orbitals. The 3B1
wavefunction was developed in the same active space,
and the orbitals were also optimized, but under the
constraint that the 17 core orbitals were identical to
those of the singlet state. To test the e�ect of this ap-
proximation, the reverse operation was also carried out,
that is the triplet orbitals were fully optimized, and the
singlet orbitals optimized under the constraint of main-
taining the triplet core orbitals frozen. This led to a
nearly identical value of the coupling constant,
7.701 cm)1 vs 8.039 cm)1. This di�erence is well below
the intrinsic error involved in using the approximate
one-electron method. Note that we report the absolute
value of the coupling constant between coupled sub-
states.

3 Method for locating and characterizing MECPs

Methods for locating the MECP between two non-
interacting PESs, e.g. corresponding to states of di�erent
spin, of di�erent spatial symmetry, or of di�erent
number of electrons, have been described before in the
literature [17±19]. These methods require analytical
energy gradients, which, together with computational
resources, place restrictions on the level of electronic
structure theory which can be applied. On the other
hand, the previous computational studies on the phenyl
cation have shown that obtaining accurate state split-
tings requires large basis sets and a good level of
correlation treatment [2, 3]. Of course, the same
computational restrictions and requirements apply when
considering the energy of stationary points on a single
PES. The di�erence is that the geometry of stationary
points is often relatively level-independent, so that their
geometry can be obtained at a low level, and only single-
point energy calculations are needed at the expensive
correlated level. The geometry of MECPs, on the other
hand, is usually strongly dependent on the level, because
changing the level of theory can ``shift'' the PESs relative
to one another by sometimes tens of kcal/mol. The
MECP will be moved as well, since by de®nition it
depends strongly on the relative energy of the two PESs.
To circumvent the necessity of performing full optimi-
zation of the MECP in the phenyl cation system at the
high levels of theory needed to reliably describe the
singlet/triplet splitting, we have developed a hybrid
approach for determining MECPs at one level with
gradients at another level. This method is new, and may
prove useful in many similar situations, so we here
describe it in some detail.

It is most readily understood by comparison with the
simpler procedure used for locating MECPs using gra-
dients and energies at the same level. This is essentially a
combination of the methods of Refs. [18] and [19]. As in
Ref. [18], the energies Ei on the two PESs and corre-
sponding energy gradients �@Ei=@q� with respect to the
nuclear coordinates q are combined to yield two e�ective
gradients, f and g. These vectors f and g are orthogonal,
and go to zero at the MECP, where the energy gradients
on the two surfaces are parallel. Around the MECP, f is
orthogonal to the crossing hyperline, whereas g is par-
allel to the hyperline and points towards the minimum.
These gradients are de®ned by:
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@q

� �
ÿ @E2

@q

� �� �
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In the method of Ref. [18], as well as in other pro-
cedures for the location of MECPs [1, 17], the necessary
energy gradients are derived from state-averaged com-
plete active space self-consistent ®eld (SA-CASSCF)
calculations. Although CAS wavefunctions have unde-
niable advantages for the description of excited states
and distorted geometries, which are often involved when
MECPs are concerned, they lead to the recovery of only
limited amounts of dynamic correlation energy, which
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means they are not always well adapted for locating the
intersection of surfaces having di�erent amounts of
correlation energy. In the present case, for example, the
3B1 phenyl cation is slightly more stable than the singlet
using HF wavefunctions, and CASSCF only recovers
about half of this di�erential correlation e�ect, leading
to a ca. 50% underestimated state splitting [2]. It is
therefore not always the best or only method for ob-
taining the gradients of Eqs. (1) and (2), and as shown in
Ref. [19], it is more appropriate to derive the gradients
from any electronic structure method, provided the
method chosen is appropriate for the problem at hand.
The geometry is then optimized using a minimization
algorithm following the sum of the two gradients f and g.
With a simple to implement steepest descent method [6],
the geometry can be rapidly (10±15 steps) converged, at
least within chemical accuracy DE < 0.05 mHartree,
rms(g) < 0.001 Hartree/a.u.). To obtain a higher level of
convergence, a more sophisticated optimization proce-
dure can also be implemented [1, 18, 19].

In the hybrid method, the gradient f is approximated
by the closely similar term f 0:

f 0 � Ehigh
1 ÿ Ehigh

2
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1
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In this equation, the subscripts (high) and (low) refer to
the level at which the corresponding number or vector is
calculated. The idea behind using the low-level gradients
is that the overall shape of the two surfaces will be
correctly reproduced by the lower level, even if their
relative energies are not. Thus, the di�erence gradient x1
should have the correct orientation, as should the gra-
dient g. Following the approximate gradients f 0 and g
[20] will lead to a point where they are equal to zero, and
should in most cases be a good approximation for the
high-level MECP. The principle behind this hybrid
method can also be expressed using the language of
Lagrangian constraints. The standard method for lo-
cating MECPs is equivalent to a full geometry optimi-
zation on one of the PESs, with the constraint that the
di�erence in energy of the surfaces is zero. The present
hybrid method is a low-level geometry optimization on
one of the surfaces, under the constraint that the dif-
ference of the high-level energies is zero. The approxi-
mate MECP which is located is then the low-level
minimum along the high-level crossing hyperline. This
approach is in many ways equivalent to that used when
calculating high-level single point energies at stationary
points optimized at a lower level. In fact, since an MECP
located using Eq. (3) is optimized at the lower level,
when computing a complete PES, the high-level energies
computed at this point should be compared to high-level
energies computed at lower-level stationary points [21].
Of course, like the single-point approximation to which
it is related, the present approximate method for locating
MECPs will fail in some cases, and as for the single-
point approximation, this will be when the shape of one
of the surfaces at the lower level is seriously wrong.

In symmetrical systems, the stationary point located
in the 3N-7 dimensions of the crossing hyperline using
either of the two methods described can be a minimum

or a higher-order stationary point. Because the MECP is
not a stationary point in the full 3N-6 dimensions of
either of the PESs, it is not possible to perform a stan-
dard frequency analysis. However, an analogous proce-
dure is possible, as suggested by the second-order Taylor
expansion for the energy of both surfaces in the vicinity
of the MECP, for a displacement Dq along the crossing
hyperline (orthogonal to x1):
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where H1 and H2 are the Hessian matrices of second
derivatives of the energy with respect to the nuclear
coordinates on the two surfaces, which can be calculated
in the normal way. Diagonalization of the e�ective
Hessian He�, should thus yield a set of normal modes
and force constants for movement along the crossing
hyperline. Because Eq. (4) is only valid for displacements
orthogonal to x1, it is actually necessary to ®rst project
out of He� the 6 rotations and translations and the
direction of the di�erence gradient x1 before diagonal-
ization. The required projection is well known [7], so it is
relatively easy to generate, project, then diagonalize He�,
thus yielding a set of 3N-7 force constants along the
crossing hyperline. As stated above, these can be useful
for verifying that the MECP is indeed a minimum, and
not a higher-order stationary point in the space of the
crossing hyperline. They can also be used, for example,
for approximate dynamical treatment of the non-
adiabatic reaction on the two surfaces.

4 MECP between the 1A1 and
3B1 states

of the phenyl cation

The main aim of the present work is to obtain energetics
for the MECP between the singlet and triplet PESs of the
phenyl cation at the CCSD(T) level of theory, which was
shown [2, 3] to provide a very reliable description of
the energetics in this C6H5

+ system. This was one of
the motivations in developing the hybrid approach
described above, because the geometry optimization of
the MECP using CCSD(T) energies and gradients would
be too expensive. First, some calibration calculations
were, however, performed to test the reliability of the
hybrid method. The MECP was optimized (within the
C2V point group to which both minima belong) ®rst at
the HF level, then at the B3LYP level, but using HF
gradients, and ®nally at the B3LYP level alone. These
methods were chosen because they give very di�erent
pictures of the energy relations between the triplet and
singlet states (see Table 1). Thus, with the basis set we
use, the 1A1 state lies 13.2 kcal/mol above the

3B1 state at
their respective minima at the HF level, whereas with the
DFT method, the state splitting is of the right sign and
even its magnitude is roughly correct (16.1 kcal/mol).
Unlike the relative energies, the geometries (Table 2,
Scheme 1) are rather similar.
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As could have been expected from the energetics, the
HF method performs very poorly as compared to
B3LYP for locating the MECP (see Tables 1, 2). At the
B3LYP level, the MECP lies just above the triplet in
energy, and has a rather similar geometry to that of the
triplet minimum. The HF MECP, in contrast, lies just
above the singlet in energy and has an energy similar to
the singlet minimum. Despite this poor behaviour of the
HF method, the MECP located using B3LYP energies
but HF gradients (Eq. 3, above) is seen to lie very close
to that obtained only with B3LYP. Thus, the failure of
the HF method to locate the MECP is not due to the
shape of the PESs, but only to their relative energies.
The same trend is found upon inspecting the gradients at
the respective MECPs. At the HF MECP, the gradient
on the triplet PES is about three times larger than that
on the singlet surface. At the B3LYP and B3LYP//HF
MECPs, the situation is reversed with the singlet gradi-
ent being larger (6 and 4 times respectively) than the
triplet one. To verify that there is no symmetry-broken
crossing point which lies lower in energy than the present

C2V MECPs, the B3LYP analytical Hessians on both
surfaces were computed, at the B3LYP MECP. The re-
sulting e�ective Hessian He� of Eq. (4) was then pro-
jected and diagonalized, to give e�ective force constants
along the crossing hyperline. These were all positive,
indicating that the MECP is indeed a minimum and not
a higher-order stationary point. The resulting (unscaled)
vibrational frequencies can also be used to include a
zero-point energy correction to the B3LYP data of Table
1; this actually leads to the MECP being lower than the
3B1 minimum, the relative energies of the

1A1 minimum,
MECP and 3B1 minimum being equal to 0.0, 14.9, and
16.7 kcal/mol. This zero-point energy correction may
not be very meaningful at the MECP, so one should not
take these energies literally, but they underline that the
MECP is very close in energy to the triplet.

The data obtained at the B3LYP level should already
be quite reliable, since as shown in the previous
computational studies on the phenyl cation [2, 3], this
method provides excellent geometries for both states,
and quite good energetics. However, as stated, we also
wanted to obtain coupled-cluster energetics for the
crossing point, and therefore reoptimized the MECP at
the CCSD(T) //B3LYP level of theory. As can be seen in
Table 2, the geometry and relative energy obtained at
this level are indeed similar to those obtained with
B3LYP. However, the MECP is a little closer to the 3B1
minimum, and lies even closer in energy to it, the dif-
ference being extremely small, at 0.1 kcal/mol [22]. This
means that even in its ground vibrational state, the vi-
brational wavefunction of the phenyl cation will have a
large amplitude in the whole region of the MECP, or, in
classical terms, the system will repeatedly traverse the
crossing seam. Even if the surface-hopping probability is
small at each passage, the triplet state will rapidly decay
into the ground, singlet, state.

In a ®rst attempt to quantify this, we considered the
spin-orbit coupling constant between the 3B1 and 1A1

Table 1. Engergies of points on the C6H5
+ potential energy surfaces (PESs) in kcal/mol relative to 1A1 C6H5

+, based on total energies with
no zero-point energy correction. The total energies of the 1A1 minimum are included for reference. For details of basis sets, see Sect. 2.

Method Etot(
1A1 min.) E(MECP) E(3B1 min.) E(1A1 at

3B1 min.) E(3B1 at
1A1 min.)

HF )229.474817 1.38 )13.23 23.01 12.05
B3LYP//HF )231.021517 16.09 15.80 22.81 35.53
B3LYP )231.023226 16.38 16.07 20.74 38.77
CCSD(T)//B3LYP )230.600367 18.67 18.85 22.39 40.83

Table 2. Geometries of points on the C6H5
+ PESs. Bond lengths are in AÊ , angles in degrees. MECP, Minimum energy crossing point

Method R1 R2 R3 a1 a2 a3 a4 b1 b2

1A1 minimum HF 1.340 1.422 1.401 143.7 106.1 121.1 121.9 129.0 117.7
B3LYP 1.339 1.447 1.405 144.5 105.8 121.2 121.5 131.0 116.1

MECP HFa 1.359 1.409 1.412 139.3 108.8 120.7 121.9 127.0 118.6
B3LYP//HFb 1.408 1.378 1.433 129.1 114.8 119.5 122.4 121.8 121.5
B3LYPa 1.415 1.392 1.437 128.9 114.9 119.4 122.5 122.3 120.6
CCSD(T)//B3LYPb 1.418 1.390 1.441 128.7 115.1 119.2 122.7 122.2 120.7

3B1 minimum HF 1.422 1.371 1.439 125.5 117.0 119.2 122.1 120.9 121.4
B3LYP 1.424 1.389 1.444 126.8 116.2 119.4 122.1 121.4 121.0

aMECP optimized with the normal procedure
bMECP optimized with the hybrid approach, using ``high''-level energies and ``low''-level gradients

Scheme 1
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states at the geometry of the B3LYP MECP. From the
point of view of the group theory, the matrix element
between a B1 and A1 state can be non-zero. Also, upon
referring to the above description of the two wavefunc-
tions, it can be seen that they di�er essentially only in the
position of a single electron, which is in an a1 (r-type)
orbital in the triplet, and in a b1 (p-type) orbital in the
singlet. Therefore, the overlap factor between the two
wavefunctions should also be quite large, and one can
expect a relatively large spin-orbit coupling constant,
considering the low nuclear charge of the nuclei in-
volved. In agreement with these predictions, we obtained
a calculated value of 8 cm)1. using an approximate one-
electron spin-orbit Hamiltonian operator [15, 16]. Al-
though this coupling constant is rather small in absolute
terms, it is certainly large enough to e�ciently mediate
transition of the triplet cation to the singlet.

5 Conclusions

In this study, we have shown that the intersection
between the lowest triplet and singlet hypersurfaces of
the phenyl cation lies very close in geometry and in
energy to the triplet minimum. Also, the spin-orbit
coupling between the two states in the vicinity of the
crossing point is small but by no means negligible. It is
therefore extremely likely that the triplet phenyl cation is
only a very short-lived intermediate which rapidly
undergoes spin-forbidden decay to the ground, singlet
state. Given an experimental set-up in which the triplet
could be unambiguously generated, and its decay to the
singlet spectroscopically monitored, it would be possible
to test the present prediction.

The location of the MECP at a reliably accurate level
of theory required the development of a hybrid method
for optimizing the geometry of such MECPs which is
analogous to the ``single-point'' approximation for
stationary points, in that it requires the calculation of
energy gradients at some lower level of theory, but only
of energies at the higher level of theory. This method
should be of general use for many problems in non-
adiabatic chemistry, where the computational resources
required to perform full geometry optimization at a re-
liable level of theory are simply unavailable. One such
area, for example, is the chemistry of transition metals,
where spin changes are not at all infrequent and often
play a key role [23, 24].
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